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Abstract
We present a computer simulation study of a colloidal particle immersed in a
solvent comprising liquid crystalline rod-shaped particles and a 10% number
concentration of small spherical additives. The presence of the colloidal particle
(and its periodic images) is found to induce qualitative changes in the phase
behaviour of the rod–sphere mixture. When the colloidal particle favours radial
anchoring, it is found that the small spheres spontaneously aggregate to form
a droplet which resides in the equatorial plane of the colloidal particle. When
the colloidal particle favours tangential anchoring, however, the small spheres
aggregate to form droplets at each of the boojums seen experimentally. These
findings confirm expectations that small additives to liquid crystalline systems
should preferentially reside in disordered regions, whilst also reflecting the
competing influence of surface tension effects.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Since the pioneering work of Asakura and Oosawa [1],much effort has gone into understanding
the interactions governing the behaviour of complex colloidal systems. For example, it is
known that spherical colloidal particles in a suspension containing low concentrations of rod-
like colloids experience an enhanced depletion-induced effective attraction [2]. If the radius of
the colloid is R and the length of the rod is l, there is a depletion zone of thickness l/2 around
the colloid in which the allowed rod orientations are restricted. When two colloids approach
each other, their depletion zones overlap further, and the resultant increase in the rods’ entropy
leads to an effective attractive force between the colloids [3].

In contrast, for systems in which the rods are much smaller than the spheres, such as liquid
crystal (LC) colloids, most models neglect the microscopic details of the LC, representing it
instead with a continuum property such as the director field n̂(r). Provided that changes in
n̂(r) occur on length scales larger than the molecular size, the free energy cost associated with
such deformations can be characterized (in the one-constant approximation) by an averaged
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Frank constant K . For a spherical colloid with radial boundary conditions, a topological
mismatch is created between the director fields near to and far from the colloid. The resultant
deviations from a uniform director field are balanced by surface energy terms characterized
by the anchoring energy W [4]. If W R/K � 1 the anchoring is weak and the bulk elasticity
prevails over the surface energy. The director field in this case is only slightly distorted. If
W R/K � 1, however, the anchoring is strong and a number of director arrangements are
possible including a quadrupolar Saturn ring structure and a dipolar structure with a satellite
defect [5]. The relative stabilities of these structures depend critically on the core energies of
any disclination ring and/or point defects present, however, an issue that is difficult to resolve
at a continuum level.

A range of computer simulation methods have been employed to assess the director field
distortions near a colloidal particle. Mesoscopic models have been used to determine, in three
dimensions, the director field around a single colloid [6] and to simulate, in two dimensions,
the aggregation of several colloids due to director-field mediated interactions [7, 8]: these
models are only able to represent the defects at a coarse-grained level, however. Microscopic
results have also been obtained for relatively small three-dimensional systems with a single
colloidal particle. For example, a Saturn ring defect was observed by Billeter and Pelcovits [9]
in a system of 2048 Gay–Berne particles of dimension 1σ0 by 3σ0 and a spherical colloid of
diameter 3σ0. A similar system was studied by Andrienko and Allen [10] using up to a million
soft Gaussian overlap particles and a single colloid up to 30σ0 in diameter. Here it was found
that, for radial anchoring, only the Saturn ring defect remained stable at small colloid sizes.
The satellite defect proved unstable over simulation timescales unless the colloid diameter was
increased to 30σ0. From density and order parameter maps measured in this study, the position
of the core region of the ring defect in these simulations was found to be a linear function of the
colloid radius R. For relatively small colloids, the defect was located very close to the colloid
surface: for R = 3.0σ0, for example, the estimated radius of the defect was Rd = 3.162σ0.
The order parameter profiles from [10] also indicated no irregularities at distances larger than
4σ0 from the colloid surface. This implies that large simulation box sizes are not needed when
simulating LC colloid systems with Saturn ring defects.

In this paper, we use molecular dynamics (MD) simulations performed in the constant
NV T ensemble to investigate the effect of small spherical additives on the director structures
adopted in the vicinity of a LC colloid. Here, the microscopic details of the LC molecules
are paramount in determining the behaviour of the small spheres, whereas the director field
perspective offers the clearest description of the resultant effect on colloid–colloid interactions.
It has been argued [11] and, more recently, observed [12] that isotropic particles in a LC
preferentially reside in regions of director distortion (such as defects) so as to relieve the high
elastic energy densities found therein. There is interest, therefore, in employing appropriately
tuned additives to control the defects that underpin, for example, the string-of-pearls LC colloid
structure. By the same token, it is possible that in any practical applications of LC colloids,
system degradation might lead to a gradual build-up of small unwanted molecular fragments.
It is, therefore, relevant to assess the possible effects of such fragments on model LC colloid
systems. The remainder of this paper is organized as follows. In section 2 we describe the
interaction potentials used in the simulations, paying particular attention to those involving the
colloidal particle. Simulation results for both radially anchored and tangentially anchored LC
colloids are then presented and discussed in section 3 before conclusions are drawn in section 4.

2. Model systems

In this study, we assess the effect of small spherical additives on the director field around a LC
colloid. To do this, we employ molecular models which are well characterized in the single
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component limit: for the sphere–sphere and rod–rod interactions, we use the Lennard-Jones
and Gay–Berne potentials, respectively. The former is given by

U LJ(ri j ) = 4ε0

((
σ0

ri j

)12

−
(

σ0

ri j

)6
)

, (1)

where σ0 and ε0 are constants that set the length and energy scales and ri j is the separation of
particles i and j . The Gay–Berne interaction between a pair of rod-like molecules is given by

U GB(ri j , ûi , û j ) = 4ε(r̂i j, ûi , û j )

[(
σ0

ri j − σ(r̂i j , ûi , û j ) + σ0

)12

−
(

σ0

ri j − σ(r̂i j , ûi , û j ) + σ0

)6
]

, (2)

where r̂i j = ri j/ri j is a unit vector along the intermolecular vector ri j = ri − r j and the
unit vectors ûi and û j denote the rod orientations. Full expressions for the shape anisotropy
parameter, σ(r̂i j , ûi , û j ), and the well-depth anisotropy function, ε(r̂i j, ûi , û j ), are given in
the standard references [13, 14].

Here, we set the diameters of the small spheres and the breadths of the rods equal to
the same constant σ0. Similarly, we equate the well depths of the rod–rod cross arrangement
and sphere–sphere interactions at ε0. Finally, the Gay–Berne model contains four adjustable
parameters: the elongation l/σ0, the energy anisotropy εside−side/εend−end and the exponents µ

and ν. Here, we adopt the frequently used parametrization l/σ0 = 3, εside−side/εend−end = 5,
µ = 2 and ν = 1 for which the bulk phase behaviour is well established [14].

For the rod–sphere potential, we employ equation (2), taking the appropriate limit of
σ(r̂i j , ûi , û j ) originally noted by Berne and Pechukas [15]. Thus, for the case where particle j
is a rod and particle i is a sphere with diameter equal to the rod’s breadth, the shape parameter
is expressed as

σ(r̂i j , û j ) = σ0[1 − χ(r̂i j · û j )
2]−1/2 (3)

where

χ = (l/σ0)
2 − 1

(l/σ0)2 + 1
. (4)

The energy parameter we adopt for the rod–sphere interaction is

ε(r̂i j , û j ) = ε0[1 − χ ′(r̂i j · û j )
2]µ, (5)

where

χ ′ =
(

1 −
(

εE

εS

)1/µ
)

(6)

and the ratio εS/εE is the side-to-end well-depth anisotropy of the interaction. In this paper,
set εS/εE = εside−side/εend−end = 5 such that the spheres favour the sides of the rods rather than
the ends.

We now consider the colloid–rod and colloid–sphere interactions. The forms used to
describe the colloid–rod potentials in [9] and [10] are both inadequate for our purposes here.
The potential used in [10] takes a shifted Lennard-Jones form with no dependence on the
rod’s orientation. It, therefore, offers no scope for tuning of either the anchoring strength or
the preferred anchoring direction. The potential used in [9] comprises two terms, one purely
repulsive and the other controlling surface anchoring. Thus

U P(ri j , û j ) = 4εP

(
σ0

ri j − σ(r̂i j , û j ) + σ0

)18

− WP

(
r̂i j · û j

ri j

)6

(7)
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Figure 1. The colloid–sphere potential (equation (8)) for R = 3σ0 and R = ∞ at εCS
0 = 4ε0.

where the parameter WP is a phenomenological anchoring coefficient. The exponent 18 instead
of 12 was chosen here so as to reduce the active interaction region and make the repulsion
‘harder’. However, equation (7) has no clear microscopic or intuitive basis for anchoring
control.

We have, therefore, developed alternative potentials for the interactions between the small
spherical and prolate particles and the large spherical colloid. For these, the large colloidal
particle was considered as an assembly of smaller spherical particles taken to interact with
a given external particle via a 6-12-power potential. Representing the colloid as an explicit
multi-site object in a simulation would be an undesirable complication (and expense). Rather,
we have developed pair-wise colloid–small-particle potentials by taking the colloid to be a
continuum of Lennard-Jonesium and integrating over its volume. As shown in the appendix,
for the colloid–sphere case, this leads to a potential of the form

U CS(ri j) = εCS
0

[
σ0

9

45(ri j − R)9
− σ0

3

6(ri j − R)3
− σ0

9

40ri j(ri j − R)8
+

σ0
9

4ri j(ri j − R)2

]
, (8)

where εCS
0 is a single adjustable parameter which can be taken to depend on the packing of the

particles forming the colloid and on the strength of their interaction with an external particle.
Figure 1 shows the colloid sphere potential for R = 3σ0 and εCS

0 = 4ε0 as an example.
The dashed line in this figure corresponds to a 3–9 potential (commonly used to represent a
semi-infinite planar substrate), which, we note, is the limit of expression (8) when R = ∞.

By employing Gay and Berne’s [13] approach of supplementing the bracketed ri j terms
with a shifted orientation-dependent range parameter, the potential (8) can also be extended to
give an interaction between the colloid and a non-spherical particle. This gives the following
colloid–rod interaction:

U CR(ri j , û j ) = εCR(r̂i j , û j )

[
σ0

9

45(di j − σCR(r̂i j , û j ) + σ0)9
− σ0

3

6(di j − σCR(r̂i j , û j ) + σ0)3

− σ0
9

40ri j(di j − σCR(r̂i j , û j ) + σ0)8
+

σ0
3

4ri j(di j − σCR(r̂i j , û j ) + σ0)2

]
, (9)
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where di j = ri j − R,

σCR(r̂i j , û j ) = σ0

√
1 − χ sin2 θ

1 − χ
, (10)

and

εCR(r̂i j , û j ) = εCR
0

(
1 − χ ′

1 − χ ′ sin2 θ

)µ

. (11)

Here, cos θ = r̂i j · û j and the parameters χ and χ ′ are the same as those defined for the rod–
sphere interaction (equations (4) and (6), respectively). The expressions (10) and (11) were
originally determined for a rod–plane system [16] but are adopted here on the basis that the
colloid radius is sufficiently large for surface curvature effects on σCR(r̂i j , û j ) and εCR(r̂i j , û j )

to be small.

3. Simulation results

All simulations presented here were performed using constant NV T MD on a 90/10 rod–
sphere mixture containing 1844 Gay–Berne rods and 204 Lennard-Jones spheres (i.e. 2048
small particles in total). The MD code employed the velocity Verlet integrator [17] with a

time step δt = 0.0015
√

mσ 2
0 /ε0. At each state point, the system was equilibrated for at least

5 × 105 time steps followed by a production run of 2 × 105 time steps. Observables were
calculated every 200 time steps and then averaged. Periodic boundary conditions, minimum
image convention and Verlet neighbour lists were applied. All interaction potentials were
truncated and shifted at a distance rc = 4σ0. The masses, m, of the rods and spheres were set
to unity as were the moments of inertia about the short axes of the rods. The colloidal particle
was treated as a static force field.

In the following, all quantities are expressed in reduced units. This means that distance
is measured in units of σ0, energy in units of ε0 and temperature in units of ε0/kB, where kB

is Boltzmann’s constant. As a consequence,
√

mσ 2
0 /ε0 is the unit of time and the number

density, ρ, is measured in units of σ−3
0 . The orientational order parameter, S, was monitored

throughout the simulations, being calculated as the ensemble average of the largest eigenvalue
of the Q tensor:

Qαβ = 1

Nrods

Nrods∑
i=1

1

2
(3uiαuiβ − δαβ), (12)

where uiα is the α component (α = x, y, z) of ûi and δαβ is the Kronecker delta. Rod–rod,
rod–sphere and sphere–sphere radial distribution functions were also calculated to assess any
structural changes.

Before considering the behaviour of this 90/10 rod–sphere mixture in the presence of
a colloidal particle, we first give a brief description of its phase behaviour in bulk. In a
previous paper [18] it was shown that, in the hard-particle limit, this mixture simply undergoes
a homogeneous nematic–isotropic transition at a slightly higher volume fraction than a pure 3:1
hard-Gaussian-overlap fluid. However, none of the lamellar and/or phase-separated behaviour
found for more extreme rod anisotropies and higher sphere concentrations was exhibited by
this system.

The bulk 90/10 rod–sphere system of Gay–Berne and Lennard-Jones particles was initially
equilibrated for 7 × 105 times steps at the mixed, isotropic state point T = 0.7 ρ = 0.26.
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Figure 2. Partial phase diagram of the bulk 90/10 mixture. Diamonds indicate simulation
points, full lines indicate approximate lines of phase stability and the broken line separates the
homogeneous and phase-separated regions.

Table 1. Temperature dependence of the nematic order parameter, S, for the bulk 90/10 rod–sphere
mixture at ρ = 0.34.

T 0.7 0.8 0.9 1.0 1.1
S 0.90 ± 0.01 0.65 ± 0.02 0.58 ± 0.02 0.41 ± 0.05 0.16 ± 0.03

On compression at this temperature, nematic order parameter and radial distribution function
measurements indicated that the system remained well mixed and isotropic up to a density
of about ρ = 0.32. At this point, phase separation was seen between sphere-rich isotropic
and rod-rich smectic phases. A subsequent heating sequence, conducted at number density
ρ = 0.34, gave the S(T ) behaviour shown in table 1. These data, supplemented by rod–rod
pair correlation function measurements, indicate that as the temperature was increased the
system underwent a smectic–nematic transition at T � 0.8. On further heating, the nematic
order parameter decreased further and, at T � 1.1, dropped to values indicative of an isotropic
phase. Based on these two simulation sequences and a number of additional runs (marked
with diamonds) the partial phase diagram shown in figure 2 was constructed for this 90/10
mixture. While this contains all of the phases observed for the pure Gay–Berne fluid, it is
noteworthy that, for the phase points investigated here, the onset of orientational ordering was
always associated with phase separation. While this cooperative behaviour must break down
at high temperatures, in order for the hard-particle limit to be regained, we shall see that the
absence of a homogeneous nematic phase here for T � 1.1 provides an interesting comparison
with the behaviour found when a colloidal particle is introduced.

We now consider the properties of this same 90/10 rod–sphere mixture (again, 2048 small
particles in total) in the presence of a spherical colloid of radius 3σ0. For this, the interaction
potentials introduced in section 2 require three energy parameters to be set: the strength and
anisotropy of the colloid–rod interaction and the strength of the colloid–sphere interaction.
Following the concept of the colloid being composed of smaller spheres, we have considered
two cases of the colloid–rod interaction anisotropy: εE/εS = 5.0 and 0.2. These correspond,
respectively, to radial and tangential anchoring. When these values were inserted into
equation (9), εend

CR /εside
CR was found to have a weak dependence on the colloid radius R. Thus,
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Table 2. Simulation observables from the T = 1.0 compression sequence with the radially
anchored colloid.

ρ PE per particle S

0.30 −2.756 ± 0.022 0.044 ± 0.014
0.31 −2.792 ± 0.024 0.058 ± 0.016
0.32 −2.845 ± 0.029 0.063 ± 0.018
0.33 −2.938 ± 0.029 0.183 ± 0.024
0.34 −3.037 ± 0.029 0.590 ± 0.022
0.35 −3.098 ± 0.031 0.688 ± 0.017

the values of εend
CR /εside

CR for R = 3σ0 were found to be 5.599 and 0.224 for εE/εS = 5.0 and
0.2, respectively.

In this model, the strength of, for example, the radial anchoring is largely determined by
the well depth of the colloid–rod end interaction, εend

CR . When this was made too deep (the
case εend

CR = 5 was tested), the rods simply formed a radially aligned shell around the colloid,
effectively forming an enlarged colloid of diameter 12σ0. The absolute values of the colloid–
rod interaction strengths were, therefore, scaled as follows. For the tangential anchoring case,
εCR

0 was adjusted to give εside
CR = 2.0ε0 and εend

CR = 0.448ε0. For the radial anchoring case, the
scaling was set to provide εside

CR = 0.40ε0 and εend
CR = 2.24ε0. Note that, at T ≈ 1.0, this gives

colloid–rod interaction energies of the same order as 5
2 T , the average kinetic energy of a single

rod. The strength of the colloid–sphere interaction parameter, εCS
0 , was scaled in a similar way

to provide an interaction well depth of ε0 (compare to figure 1).
For the system with a radially anchored colloid,one compression sequence and one cooling

sequence were performed. The initial configuration for this system was created from a bulk
configuration of 2048 small particles by placing a colloidal particle of zero size in the simulation
box and gradually expanding it up to R = 3σ0. This system was then equilibrated for 7 × 106

time steps at ρ = 0.30 and T = 1.0, to give an isotropic and homogeneous configuration
with little distortion at the colloid surface. This was compressed at T = 1.0 up to a number
density of ρ = 0.35. The potential energy per particle and nematic order parameter values
measured during this sequence are presented in table 2. These data indicate an isotropic–
nematic transition at ρ ≈ 0.33. Figure 3(a) shows the rod–rod and sphere–sphere radial
distribution functions measured at ρ = 0.35 and T = 1.0. These indicate the homogeneity of
this mixture, as do the corresponding configuration snapshot and director field map (figures 3(b)
and (c)). To calculate the latter, the simulation box was divided into 30 × 30 × 30 cells and
the order parameter in each cell calculated as an average over 4 × 106 timesteps. Since, in the
cases depicted here, the overall director was parallel to one of the simulation box sides, it was
possible to simply slice the system through the centre of the colloid and calculate the order
averaged over equivalent cells in the two central planes. Thus, the director field is displayed
using ellipses whose orientations and eccentricities indicate the orientational order and whose
greyscale colours indicate the local rod-number density.

While some disruption of the director field is apparent from figures 3(b) and (c), it did
not prove possible to detect a stable defect structure in this system. This is presumably related
to the relatively weak radial anchoring induced at the colloid surface. The most noteworthy
aspect of this set of results is, therefore, its departure from the bulk phase behaviour of the
90/10 rod–sphere mixture: in the presence of the colloidal particle, the rod–sphere mixture
has formed a homogeneous nematic phase, rather than phase separating. Since the colloid
reduced the free volume available for the small particles (by occupying approximately 3.5%
of the box), this mixture was expected to phase separate at ρ = 0.34. Instead, it remained
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Figure 3. (a) Radial distribution functions grr (r) and gss (r) measured at ρ = 0.35 and T = 1.0
with the radially anchored colloid; (b) configurational snapshot and (c) director map obtained at
this data point.

homogeneous even at ρ = 0.35. We infer from this that the elastic free energy gain obtained by
the colloid-free 90/10 system when it phase-separated was restricted here by the director field
distortions imposed by the colloid. This does not imply a change of phase behaviour due to the
presence of a single colloidal particle, since the periodic boundary conditions used here imply
a periodic array of such particles. Instead, it appears that the compositional homogeneity of
this nematic phase followed from the inclusion of two types of spherical particles, with very
different sizes, in the simulation. Taken in the context of recent experimental results [19, 20],
this observation may help to explain why the transparent nematic phase reported by Yamamoto
and Tanaka [21] has not been found in this newer work.
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Table 3. Simulation observables from the ρ = 0.34 cooling sequence with the radially anchored
colloid.

T PE per particle S

1.00 −3.037 ± 0.029 0.590 ± 0.021
0.95 −3.263 ± 0.028 0.626 ± 0.014
0.90 −3.582 ± 0.029 0.653 ± 0.002
0.85 −3.869 ± 0.033 0.692 ± 0.002

In order to induce a higher degree of radial alignment at the colloid surface, the system
was subjected to a cooling sequence at ρ = 0.34. The results of previous studies [9, 10]
indicate that, for this size of colloidal particle, increasing the anchoring strength should induce
formation of a Saturn ring defect. While the potential energy and order parameter data from
this cooling sequence (table 3) indicate reasonably steady changes, the corresponding radial
distribution functions and configurational snapshots show phase separation for T � 0.90.
Interestingly, the configurational snapshot and director map (figures 4(a) and (b)) show that,
rather than nucleating into a Saturn ring structure (i.e. residing preferentially in the expected
disordered region), the spheres clustered into a single, approximately spherical droplet. We
ascribe the formation of this alternative droplet structure to the additional effect of the rod–
sphere surface tension, which will have opposed any large-surface-area arrangement such as
a ring of spheres. In general, we would expect the shape and dynamics of this droplet to vary
with its size. For example, the effective attraction to equatorial regions might lead to a less
spherical droplet were a larger number of small spheres included in the system.

To gain information on the behaviour of the droplet formed here,measurements were made
of the probability distribution of small spheres resolved along the director. Here the number of
spheres was calculated in slices perpendicular to the director and normalized by their volumes
and the total number of spheres counted. Figure 4(c) shows the results for this distribution
function averaged over 2 × 105 time steps at T = 0.85. It confirms that the spheres making
up this droplet tended to reside in the equatorial plane of the colloidal particle. Distributions
equivalent to that shown in figure 4(c) but averaged over shorter times were not symmetrical
around zero (the equatorial plane), even though they resulted in a symmetrical distribution
after averaging. This suggests that the droplet of spheres underwent marked oscillations away
from its equilibrium position.

Due to the symmetry of the rod–sphere interaction (recall that the spheres favoured the
sides of the rods) the droplet of spheres formed by this system was, effectively, a second colloid
with tangential surface anchoring. Therefore, the snapshot figure 4(a) can be interpreted as a
stable arrangement for two colloidal particles with different senses of surface anchoring. On
closer examination of this snapshot and the corresponding director map, evidence of a Saturn
ring defect can still be seen diametrically opposite the droplet of spheres. We speculate,
therefore, that the arrangement depicted in figure 4(a) actually comprises a radially anchored
colloid with a Saturn ring defect which penetrates (and passes through the centre of) a coupled
but distorted tangentially anchored colloid. Had two rigid colloids with opposing (i.e. normal
and tangential) anchoring conditions achieved twinning in this way, in so doing they would
have had to overcome a mutual repulsion due to the (elastically expensive) hybridly anchored
region that would have developed between them. We suggest, therefore, that the sequence of
events that lead to the formation of the twinned structure may here have involved an initial
nucleation of the small spheres at (and promoted by) the ring defect. In this scenario, the
preferred anchoring of the tangential colloidal will not have played a role until the droplet
location was reasonably well established. The boojum defects associated with the tangential
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Figure 4. (a) Configurational snapshot and (b) director map obtained at ρ = 0.34 and T = 0.85;
(c) probability distribution of small spheres along the director at this state point (centred on the
colloid equatorial plane).

colloid [22] can also be seen in figure 4(a) on the bisector of the two colloid centres. On the
basis of these observations, we have constructed the schematic diagram of a possible director
field for this arrangement given in figure 5.

Finally, the same 90/10 rod–sphere mixture was simulated with a colloidal particle
parametrized to favour tangential anchoring. Analogous to the simulations discussed above,
this system was first compressed at T = 1.0 through the density range 0.30 � ρ � 0.35. The
potential energy per particle and nematic order parameter values measured during this sequence
are shown in table 4. These indicate an isotropic–nematic transition, the presence of the colloid
again inhibiting the tendency of the small spheres to phase separate. Subsequently, the final
configuration obtained at ρ = 0.35 was cooled to T = 0.85 with a decrement of 
T = 0.05.
According to the sphere–sphere radial distribution function data, this system underwent phase
separation at T = 0.90. Here, the probability distribution of small spheres along the director
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Figure 5. Schematic diagram of the director field corresponding to the configuration snapshot
shown in figure 4(a).

Table 4. Simulation observables from the T = 1.0 compression sequence with the tangentially
anchored colloid.

ρ PE per particle S

0.30 −2.761 ± 0.024 0.044 ± 0.016
0.31 −2.834 ± 0.026 0.068 ± 0.018
0.32 −2.901 ± 0.027 0.125 ± 0.031
0.33 −2.982 ± 0.029 0.455 ± 0.017
0.34 −3.061 ± 0.029 0.581 ± 0.018
0.35 −3.129 ± 0.034 0.678 ± 0.019

(figure 6(a)) indicated clustering of spheres near to the poles of the colloid. The configuration
snapshot and director map obtained at ρ = 0.35 and T = 0.9 (figures 6(b) and (c)) illustrate
the resulting structure for this case, a droplet of spheres being located adjacent to each of the
colloid’s poles.

Here, therefore, the simulation results gave an outcome consistent with expectations:
the spheres aggregated preferentially in the orientational defect regions. The reason for the
clustering of the spheres at the boojums is simply that such an arrangement expels LC particles
from a region in which there would otherwise have been a high elastic free energy density. The
‘melting’ of these defect regions by isotropic particles also has implications for the director-
field-mediated colloid–colloid interactions present in a more general multi-colloid setup since,
for example, the long-ranged form and dynamic response of a melted defect will presumably
differ from those of a true LC defect. As yet, we are not aware of any published work on
experimental investigations of such effects.

4. Conclusions

In this paper, we have extended our previous work on mixtures of small spheres and rods
by incorporating an additional large spherical particle. This has been achieved through the
development of an efficient potential for the interaction between small particles and a large
spherical particle. This potential also provides an intuitive link between model parameters and
the sense and strength of the surface anchoring.

Here, exploratory simulations have shown that the incorporation of a spherical colloidal
particle (and its periodic images) can change the bulk phase behaviour of the surrounding rod–
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Figure 6. (a) Sphere probability distribution along the director at ρ = 0.35 and T = 1.0 and 0.9;
(b) configurational snapshot and (c) director map obtained at the lower temperature.

sphere solvent. Additionally, the presence of the small spheres in the solvent has been shown
to modify the defect structures formed by both radially and tangentially anchoring colloids.
In the latter case, the effect was relatively minor, in that the spheres simply clustered at the
defects, but in the former situation, the structure and symmetry of the director field around the
colloid were both changed.

The range of changes observed here, in a relatively cursory survey of this class of system,
suggests a rich phenomenology which is ripe for further exploration by both experiment and
molecular simulation. Particularly fruitful areas for such studies include the use of small
particulates for the control of LC-mediated colloid–colloid interactions (and thus the structures



The effect of spherical additives on a liquid crystal colloid S1899

O
A

d

a

Figure 7. Schematic diagram of a spherical particle near a colloid.

adopted by LC colloids) and the possible range of structures formed when mixtures of colloids
with different anchoring strengths and symmetries are incorporated into a LC solvent. The
latter situation could also be generalized to the behaviour of surface-patterned LC colloids.
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Appendix

The colloid–sphere potential is defined as being the Lennard-Jones potential integrated over
the colloid volume. To determine this, we first evaluate the interaction between a spherical
shell of radius a and a Lennard-Jones sphere a distance r from the centre of the shell. To
simplify the algebra, the interaction is initially considered here to be proportional to ε0(

σ0
r )n .

The points located on a ring on the sphere given by constant θ and 0 � φ < 2π are equidistant
from point A, the location of the Lennard-Jones sphere (figure 7). If da is the thickness of the
spherical shell and a dθ is the width of the ring, the potential created by this ring at the point
A is:

dU (r, a, θ) =
∫ 2π

0

ε0σ0
na dθ da ρa sin θ dφ

(r2 + a2 − 2ar cos θ)n/2
(13)

where the constant ρ = Ntotal
4πa2 da is the number density of the microscopic particles assumed to

make up the colloid. Integrating dU over angular variables (i.e. the whole spherical surface)
gives

U(r, a) = Ntotalε0σ0
n

2ar(n − 2)

[
1

(r − a)n−2
− 1

(r + a)n−2

]
, n �= 2. (14)

The potential created at A by the full colloid is then given by the sum of the contributions from
a set of concentric spherical shells. In order to calculate this, we integrate U(r, a) over radii
in the range 0 � a � R to obtain

U(r) = 2πρε0σ0
n

r(n − 2)

[
r

n − 3

(
1

(r − R)n−3
− 1

(r + R)n−3

)

− 1

n − 4

(
1

(r − R)n−4
− 1

(r + R)n−4

)]
.
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In the vicinity of the colloid’s surface, (r − R) � (r + R) and terms containing (r + R) in
their denominator can be neglected for sufficiently large n. For exponents n = 6 and 12, this
approximation is reasonable and the resultant expression for the colloid–sphere potential is

U CS(r) = εCS

[
1

45

(
σ0

r − R

)9

− 1

6

(
σ0

r − R

)3

− σ0

40r

(
σ0

r − R

)8

+
σ0

4r

(
σ0

r − R

)2
]

, (15)

where εCS is now taken to be an adjustable parameter which depends on the packing of particles
forming the colloid and the strengths of their interactions with an external particle.
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